Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Hydrogen bonding in 2-(hydroxy-methyl)-1,3-propanediol and $N, N^{\prime}-$ bis[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide

Christiane Fernandes, ${ }^{\text {a }}$ James L. Wardell ${ }^{\mathbf{a}}$ and Janet M. S. Skakle ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland Correspondence e-mail: j.skakle@abdn.ac.uk

Received 26 June 2002
Accepted 4 July 2002
Online 20 July 2002

The molecule of 2-(hydroxymethyl)-1,3-propanediol, $\mathrm{C}_{4} \mathrm{H}_{10^{-}}$ O_{3}, lies across a mirror plane in space group $P 2_{1} / m$, with disorder of both terminal hydroxyl H atoms. The molecules are linked by three $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which combine to form sheets; in each $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond, the H atom resonates between the two O atoms. In the crystal structure of N, N^{\prime}-bis[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide, $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$, the molecule lies about a twofold axis and has four strong hydrogen bonds which form a mixture of chains and dimers; these combine to give a three-dimensional supramolecular framework.

Comment

The supramolecular structure of N, N^{\prime}-bis[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]ethanediamide, $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNHCO}-$ $\mathrm{CONHC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, (I), was recently reported to be twodimensional, despite the presence of six independent hydrogen bonds (Ross et al., 2001). The aminotriol parent of (I), namely $\mathrm{H}_{2} \mathrm{NC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, (II) (Eilerman \& Rudman, 1980;

(VI)

(VII)

Castellari \& Ottani, 1997), also has a two-dimensional supramolecular structure in the orthorhombic phase, as does pentaerythritol, $\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}$, (III) (Ladd, 1979; Eilerman \& Rudman, 1979a; Hope \& Nichols, 1981; Semmingsen, 1988; Katrusiak, 1995; Batten \& Robson, 1998). In contrast, the hydrogen-bonding arrangements in 3-hydroxy-2,2-bis(hydroxymethyl)propanoic acid, $\mathrm{HO}_{2} \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, (IV)
(Eilerman \& Rudman, 1979b), and 2-ethyl-2-(hydroxy-methyl)-1,3-propanediol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, (V) (Zakaria et al., 2001), produce a three-dimensional array. The supramolecular structures of 2-(hydroxymethyl)-1,3-propanediol, (VI), and N, N^{\prime}-bis-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide, (VII), have now been determined and compared to those of compounds (I)-(V).

A general view of the molecule of (VI) is shown in Fig. 1. Atoms $\mathrm{C} 1, \mathrm{C} 2$ and O 1 lie on the mirror plane, leading to disorder of the hydroxyl H atom bonded to atom O1. Similarly, there is disorder of the second hydroxyl group, resulting in three strong hydrogen bonds (Table 1). In fact, it can be considered that the H atoms resonate between the O atoms, so that a continous network of hydrogen bonds forms. In Fig. 2, H atoms have been omitted to make this network clearer; the dashed lines represent $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds where the H atom may be coordinated to either O atom. Two chains form: (i) from $\mathrm{O} 2-\mathrm{H} 2 C \cdots \mathrm{O} 1\left(1-x, y-\frac{1}{2}, 1-z\right)$, leading to a $C(8)$ chain along (010), which combine to form a series of $R_{2}^{2}(12)$ rings (Fig. 2); (ii) from a combination of the first hydrogen bond and $\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2(-x,-y,-z)$, resulting in $C(8)$

Figure 1
A view of the molecule of (VI), showing the atom-numbering scheme. The molecule lies across the mirror [symmetry code: (i) $x,-y+\frac{1}{2}, z$]. Dashed lines indicate disorder of the terminal H atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

Figure 2
The arrangement of molecules of (VI) within the unit cell, showing the formation of sheets normal to [100]. Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds in which H atoms resonate between the two O atoms, as indicated by the disorder, shown as in Fig. 1.
chains and $R_{4}^{4}(12)$ rings, which combine to form a sheet, shown normal to [100] in Fig. 2.

A sheet arrangement of molecules was also found for the trihydroxy compound, (V) (Zakaria et al., 2001). The framework in (V) consists of parallel molecular ladders, generated by two of the three $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The ladders are linked together by the third hydrogen bond (Zakaria et al., 2001). In the tetrahydroxy compound, (III), the two-dimensional (sheet) structure is created by each molecule linking to four others through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; all the hydroxyl groups in (III) act as hydrogen-bond acceptors and donors (Ladd, 1979; Eilerman \& Rudman, 1979a; Hope \& Nichols, 1981; Semmingsen, 1988; Katrusiak, 1995; Batten \& Robson, 1998).
N, N^{\prime}-Bis-2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide, (VII) (Fig. 3), crystallizes in space group C2/c with atom C6 on a twofold axis.

Four strong hydrogen bonds form (Table 2); amide atom N1 donates to hydroxyl atom $\mathrm{O} 3[\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3(x, y+1, z)]$, to form a $C(5)$ chain along [010]. The symmetry of the molecule leads to two parallel $C(5)$ chains, giving linked $R_{2}^{2}(18)$ rings

Figure 3
A view of the molecule of (VII), showing the atom-numbering scheme and the formation of the molecule via a symmetry operation [symmetry code: (i) $-x, y,-z+\frac{1}{2}$]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

Figure 4
Part of the crystal structure of (VII), showing the $C(5)$ chains formed from $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{ii}}$ hydrogen bonds [symmetry code: (ii) $x, y+1, z$].

Figure 5
Part of the crystal structure of (VII), showing the sheets formed from two hydrogen bonds $\left[\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {iv }}\right.$ and $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {iii. }}$; symmetry codes: (iii) $-\frac{1}{2}+x, \frac{1}{2}+y, z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$], resulting in an $R_{4}^{4}(8)$ ring, viz. $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{ii}}-\mathrm{H} 2^{\mathrm{iii}} \ldots \mathrm{O} 4^{\text {vi }}-\mathrm{H} 4^{\mathrm{vi}} \ldots \mathrm{O} 2^{\mathrm{iii}}-\mathrm{H} 2^{\mathrm{iii}} \ldots \mathrm{O} 4$ [symmetry codes: (ii) $x, y+1, z$; (vi) $\left.-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$.

Figure 6
The combination of three hydrogen bonds in the structure of (VII), i.e. $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3, \mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ and $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$. This gives $C(5), C(7)$ and $C(13)$ chains which combine to give $R_{2}^{2}(8)$ and $R_{2}^{2}(13)$ rings. [Symmetry codes: (iii) $-\frac{1}{2}+x, \frac{1}{2}+y, z$; (vi) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.]
(Fig. 4). The hydroxyl atoms O 2 and O 4 act as both donor and acceptor; $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2\left(-\frac{1}{2}+x, \frac{1}{2}+y, z\right)$ leads to a $C(13)$ chain along [110], whilst $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4\left(\frac{1}{2}-x, \frac{1}{2}-y, 1-z\right)$ gives rise to a dimer centred on the inversion at $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$, leading to an $R_{2}^{2}(12)$ motif. The two combine to give a sheet containing adjacent $R_{4}^{4}(8)$ and $R_{2}^{2}(12)$ rings, $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$ (Fig. 5). The final hydrogen bond again has a hydroxyl O atom as donor, but with the $\mathrm{C}=\mathrm{O}$ group as acceptor, $\mathrm{O} 3-$ $\mathrm{H} 3 \cdots \mathrm{O} 1\left(\frac{1}{2}+x,-\frac{1}{2}+y, z\right)$, thus generating a $C(7)$ chain along [11 0$]$. The four hydrogen bonds combine in a number of ways. In addition to the formation of the $R_{4}^{4}(8)$ ring shown in Fig. 5, $C(5)$ and $C(7)$ combine to form an $R_{2}^{2}(8)$ ring, whilst $C(7)$ and $C(13)$ combine to give an $R_{2}^{2}(13)$ motif; both of these are shown in Fig. 6. Finally, all hydrogen bonds combine via the linking dimer to form a three-dimensional framework (Fig. 7).

The additional methylene group in (VII) results in significant structural differences between (I) (Ross et al., 2001) and (VII), the most striking being the change from a two-dimensional supramolecular network in (I) to the three-dimensional arrangement in (VII). The amido NH units in (I) take no part in the supramolecular aggregation, being solely involved in intramolecular hydrogen bonding with the adjacent carbonyl O atoms (Ross et al., 2001). Each molecule of (I) acts as a fourfold donor and acceptor in intermolecular hydrogen bonding and each molecule of (I) is thereby linked to six others in the resulting two-dimensional array (Ross et al., 2001). In the aminotriol (II), the amino group is involved in the intermolecular hydrogen bonding. However, despite there being four distinct hydrogen bonds (two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, one $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ and one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$), the supramolecular structure is only two-dimensional (Eilerman \& Rudman, 1980; Castellari \& Ottani, 1997).

Figure 7
The unit cell of (VII), showing the formation of a three-dimensional framework of hydrogen bonds.

Experimental

Compound (VI) was a commercial sample and was recrystallized from dry ethyl acetate. Compound (VII) was prepared from (II) $(0.045 \mathrm{~mol})$ and diethyl malonate $(0.023 \mathrm{~mol})$ in refluxing methanol for 2 h . On cooling, colourless crystals of (VII) slowly formed. The product was recrystallized from aqueous EtOH (yield 90%, m.p. $428 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, p.p.m.): $\delta 3.15\left(s, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.539(d$, $\left.12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.63(t, 6 \mathrm{H}, \mathrm{OH}), 7.55(s, 2 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\right.$ d_{6}, p.p.m.): $\delta 44.4\left(\mathrm{COCH}_{2}\right), 60.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.9$ (C-quarternary), $168.8(\mathrm{CO})$. IR (KBr): v 3361 and $3308(\mathrm{OH}), 3217(\mathrm{NH}), 2970,2953$ and $2883(\mathrm{CH}), 1648(\mathrm{CO})$.

Compound (VI)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3}$
$M_{r}=106.12$
Monoclinic, $P 2_{1} / m$
$a=4.8066$ (3) А
$b=9.5179$ (6) \AA
$c=6.1346$ (4) \AA
$\beta=107.911$ (4) ${ }^{\circ}$
$V=267.05(3) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.320 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1123 \\
& \quad \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.26 \times 0.12 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius KappaCCD
diffractometer
φ and ω scans
Absorption correction: empirical
(SORTAV; Blessing, 1995, 1997)
$T_{\text {min }}=0.949, T_{\text {max }}=0.994$
2166 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.103$
$S=1.04$
629 reflections
46 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 629 \text { independent reflections } \\
& 504 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.038 \\
& \theta_{\max }=27.4^{\circ} \\
& h=-5 \rightarrow 6 \\
& k=-12 \rightarrow 11 \\
& l=-7 \rightarrow 7 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0523 P)^{2}\right. \\
& \quad+0.0278 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.21(5)
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (VI).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.91	$2.7130(11)$	167
$\mathrm{O} 2-\mathrm{H} 2 B \cdots{ }^{\mathrm{iii}}$	$0.82(4)$	$1.91(4)$	$2.729(2)$	$173(4)$
$\mathrm{O}_{2}-\mathrm{H} 2 C \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.79(4)$	$1.93(4)$	$2.7130(11)$	$175(4)$

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-x,-y,-z$; (iii) $1-x, y-\frac{1}{2}, 1-z$.

Compound (VII)

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$
$M_{r}=310.31$
Monoclinic, $C 2 / c$
$a=11.6928$ (11) \AA
$b=5.6610$ (5) A
$c=21.0034$ (19) \AA
$\beta=92.700(2)^{\circ}$
$V=1388.7(2) \AA^{3}$
$Z=4$
$D_{x}=1.484 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3982
\quad reflections
$\theta=3.7-32.3^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=292(2) \mathrm{K}$
Plate, colourless
$0.50 \times 0.50 \times 0.10 \mathrm{~mm}$
$D_{x}=1.484 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3982
reflections
$\theta=3.7-32.3^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=292$ (2) K
$0.50 \times 0.50 \times 0.10 \mathrm{~mm}$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$) for (VII).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {i }}$	0.86	2.58	3.2445 (16)	135
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {ii }}$	0.82	2.03	2.8037 (16)	157
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {iii }}$	0.82	1.91	2.7238 (15)	172
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {iv }}$	0.82	1.89	2.7069 (16)	175
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 1$	0.97	2.47	2.9227 (19)	108

Symmetry codes: (i) $x, 1+y, z$; (ii) $x-\frac{1}{2}, \frac{1}{2}+y, z$; (iii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (iv) $\frac{1}{2}+x, y-\frac{1}{2}, z$.

Data collection

Bruker SMART 1000 CCD area-	2473 independent reflections
\quad detector diffractometer	2027 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.040$
Absorption correction: multi-scan	$\theta_{\max }=32.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2000)	$h=-10 \rightarrow 17$
$\quad T_{\text {min }}=0.869, T_{\text {max }}=0.987$	$k=-8 \rightarrow 8$
6754 measured reflections	$l=-31 \rightarrow 31$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1186 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$	$+0.6984 P]$
$w R\left(F^{2}\right)=0.187$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.06$	$(\Delta / \sigma)_{\max }<0.001$
2473 reflections	$\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3}$
103 parameters	$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$
H-atom parameters constrained	

H -atom parameters constrained
All H atoms were placed in geometrically calculated positions and refined using a riding model. PLATON (Spek, 2002) was used for the analysis of the hydrogen bonding.

For compound (VI), data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT. For compound (VII), data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT. For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX in OSCAIL (McArdle, 1994, 2000) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

CF and JLW thank CNPq, FAPERJ and FUJB. JMSS thanks the University of Aberdeen for supporting the X-ray facilities. The authors thank the EPSRC's X-ray Crystallographic Service, University of Southampton, for collecting the data for (VI), and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1567). Services for accessing these data are described at the back of the journal.

References

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
Castellari, C. \& Ottani, S. (1997). Acta Cryst. C53, 482-486.
Eilerman, D. \& Rudman, R. (1979a). Acta Cryst. B35, 2458-2460.
Eilerman, D. \& Rudman, R. (1979b). Acta Cryst. B35, 2768-2771.
Eilerman, D. \& Rudman, R. (1980). J. Chem. Phys. 72, 5656-5666.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Hope, H. \& Nichols, B. G. (1981). Acta Cryst. A37, C-136.
Katrusiak, A. (1995). Acta Cryst. B51, 873-879.
Ladd, M. F. C. (1979). Acta Cryst. B35, 2375-2377.
McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
McArdle, P. (2000). OSCAIL for Windows. National University of Ireland, Galway, Ireland.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Ross, J. N., Low, J. N., Fernandes, C., Wardell, J. L. \& Glidewell, C. (2001). Acta Cryst. C57, 949-951.
Semmingsen, D. (1988). Acta Chem. Scand. Ser. A, 42, 279-283.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. Version of 2002. University of Utrecht, The Netherlands.
Zakaria, C. M., Low, J. N. \& Glidewell, C. (2001). Acta Cryst. E57, o1081o1083.

