ISSN 0108-2701

Hydrogen bonding in 2-(hydroxymethyl)-1,3-propanediol and *N,N'*-bis[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide

Christiane Fernandes,^a James L. Wardell^a and Janet M. S. Skakle^b*

^aDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland Correspondence e-mail: j.skakle@abdn.ac.uk

Received 26 June 2002 Accepted 4 July 2002 Online 20 July 2002

The molecule of 2-(hydroxymethyl)-1,3-propanediol, C_4H_{10} - O_3 , lies across a mirror plane in space group $P2_1/m$, with disorder of both terminal hydroxyl H atoms. The molecules are linked by three $O-H\cdots O$ hydrogen bonds which combine to form sheets; in each $O-H\cdots O$ bond, the H atom resonates between the two O atoms. In the crystal structure of N,N'-bis[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide, $C_{11}H_{22}N_2O_8$, the molecule lies about a twofold axis and has four strong hydrogen bonds which form a mixture of chains and dimers; these combine to give a three-dimensional supramolecular framework.

Comment

The supramolecular structure of N,N'-bis[2-hydroxy-1,1-bis-(hydroxymethyl)ethyl]ethanediamide, (HOCH₂)₃CNHCO-CONHC(CH₂OH)₃, (I), was recently reported to be twodimensional, despite the presence of six independent hydrogen bonds (Ross *et al.*, 2001). The aminotriol parent of (I), namely H₂NC(CH₂OH)₃, (II) (Eilerman & Rudman, 1980;

Castellari & Ottani, 1997), also has a two-dimensional supramolecular structure in the orthorhombic phase, as does pentaerythritol, $C(CH_2OH)_4$, (III) (Ladd, 1979; Eilerman & Rudman, 1979*a*; Hope & Nichols, 1981; Semmingsen, 1988; Katrusiak, 1995; Batten & Robson, 1998). In contrast, the hydrogen-bonding arrangements in 3-hydroxy-2,2-bis-(hydroxymethyl)propanoic acid, HO₂CC(CH₂OH)₃, (IV)

(Eilerman & Rudman, 1979*b*), and 2-ethyl-2-(hydroxymethyl)-1,3-propanediol, $CH_3CH_2C(CH_2OH)_3$, (V) (Zakaria *et al.*, 2001), produce a three-dimensional array. The supramolecular structures of 2-(hydroxymethyl)-1,3-propanediol, (VI), and *N*,*N*'-bis-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide, (VII), have now been determined and compared to those of compounds (I)–(V).

A general view of the molecule of (VI) is shown in Fig. 1. Atoms C1, C2 and O1 lie on the mirror plane, leading to disorder of the hydroxyl H atom bonded to atom O1. Similarly, there is disorder of the second hydroxyl group, resulting in three strong hydrogen bonds (Table 1). In fact, it can be considered that the H atoms resonate between the O atoms, so that a continous network of hydrogen bonds forms. In Fig. 2, H atoms have been omitted to make this network clearer; the dashed lines represent $O-H\cdots O$ bonds where the H atom may be coordinated to either O atom. Two chains form: (i) from $O2-H2C\cdots O1(1-x, y-\frac{1}{2}, 1-z)$, leading to a C(8)chain along (010), which combine to form a series of $R_2^2(12)$ rings (Fig. 2); (ii) from a combination of the first hydrogen bond and $O2-H2B\cdots O2(-x, -y, -z)$, resulting in C(8)

Figure 1

A view of the molecule of (VI), showing the atom-numbering scheme. The molecule lies across the mirror [symmetry code: (i) x, $-y + \frac{1}{2}$, z]. Dashed lines indicate disorder of the terminal H atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

Figure 2

The arrangement of molecules of (VI) within the unit cell, showing the formation of sheets normal to [100]. Dashed lines indicate $O-H \cdots O$ bonds in which H atoms resonate between the two O atoms, as indicated by the disorder, shown as in Fig. 1.

organic compounds

chains and $R_4^4(12)$ rings, which combine to form a sheet, shown normal to [100] in Fig. 2.

A sheet arrangement of molecules was also found for the trihydroxy compound, (V) (Zakaria *et al.*, 2001). The framework in (V) consists of parallel molecular ladders, generated by two of the three $O-H\cdots O$ hydrogen bonds. The ladders are linked together by the third hydrogen bond (Zakaria *et al.*, 2001). In the tetrahydroxy compound, (III), the two-dimensional (sheet) structure is created by each molecule linking to four others through $O-H\cdots O$ hydrogen bonds; all the hydroxyl groups in (III) act as hydrogen-bond acceptors and donors (Ladd, 1979; Eilerman & Rudman, 1979*a*; Hope & Nichols, 1981; Semmingsen, 1988; Katrusiak, 1995; Batten & Robson, 1998).

N,N'-Bis-2-hydroxy-1,1-bis(hydroxymethyl)ethyl]malonamide, (VII) (Fig. 3), crystallizes in space group C2/c with atom C6 on a twofold axis.

Four strong hydrogen bonds form (Table 2); amide atom N1 donates to hydroxyl atom O3 $[N1-H1\cdots O3(x, y + 1, z)]$, to form a C(5) chain along [010]. The symmetry of the molecule leads to two parallel C(5) chains, giving linked $R_2^2(18)$ rings

Figure 3

A view of the molecule of (VII), showing the atom-numbering scheme and the formation of the molecule *via* a symmetry operation [symmetry code: (i) -x, y, $-z + \frac{1}{2}$]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

Figure 4

Part of the crystal structure of (VII), showing the C(5) chains formed from N1-H1···O3ⁱⁱ hydrogen bonds [symmetry code: (ii) x, y + 1, z].

Figure 5

Part of the crystal structure of (VII), showing the sheets formed from two hydrogen bonds $[O2-H2\cdots O4^{iv} \text{ and } O4-H4\cdots O2^{iii}; \text{ symmetry codes:}$ (iii) $-\frac{1}{2} + x, \frac{1}{2} + y, z;$ (iv) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$], resulting in an $R_4^4(8)$ ring, *viz*. O4-H4 \cdots O2ⁱⁱⁱ-H2ⁱⁱ \cdots O4^{vi}-H4^{vi} \cdots O2ⁱⁱⁱ-H2ⁱⁱⁱ \cdots O4 [symmetry codes: (ii) x, y + 1, z; (vi) $-\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$].

Figure 6

The combination of three hydrogen bonds in the structure of (VII), *i.e.* N1-H1...O3, O3-H3...O1 and O4-H4...O2. This gives C(5), C(7) and C(13) chains which combine to give $R_2^2(8)$ and $R_2^2(13)$ rings. [Symmetry codes: (iii) $-\frac{1}{2} + x$, $\frac{1}{2} + y$, z; (vi) $-\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$.]

(Fig. 4). The hydroxyl atoms O2 and O4 act as both donor and acceptor; $O4 - H4 \cdots O2(-\frac{1}{2} + x, \frac{1}{2} + y, z)$ leads to a C(13) chain along [$\overline{110}$], whilst $O2 - H2 \cdots O4(\frac{1}{2} - x, \frac{1}{2} - y, 1 - z)$ gives rise to a dimer centred on the inversion at $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$, leading to an $R_2^2(12)$ motif. The two combine to give a sheet containing adjacent $R_4^4(8)$ and $R_2^2(12)$ rings, O2-H2···O4-H4···O2 (Fig. 5). The final hydrogen bond again has a hydroxyl O atom as donor, but with the C=O group as acceptor, O3-H3···O1($\frac{1}{2}$ + x, $-\frac{1}{2}$ + y, z), thus generating a C(7) chain along $[1\overline{10}]$. The four hydrogen bonds combine in a number of ways. In addition to the formation of the $R_4^4(8)$ ring shown in Fig. 5, C(5) and C(7) combine to form an $R_2^2(8)$ ring, whilst C(7) and C(13) combine to give an $R_2^2(13)$ motif; both of these are shown in Fig. 6. Finally, all hydrogen bonds combine via the linking dimer to form a three-dimensional framework (Fig. 7).

The additional methylene group in (VII) results in significant structural differences between (I) (Ross et al., 2001) and (VII), the most striking being the change from a two-dimensional supramolecular network in (I) to the three-dimensional arrangement in (VII). The amido NH units in (I) take no part in the supramolecular aggregation, being solely involved in intramolecular hydrogen bonding with the adjacent carbonyl O atoms (Ross et al., 2001). Each molecule of (I) acts as a fourfold donor and acceptor in intermolecular hydrogen bonding and each molecule of (I) is thereby linked to six others in the resulting two-dimensional array (Ross et al., 2001). In the aminotriol (II), the amino group is involved in the intermolecular hydrogen bonding. However, despite there being four distinct hydrogen bonds (two O-H···O, one O- $H \cdots N$ and one $N - H \cdots O$), the supramolecular structure is only two-dimensional (Eilerman & Rudman, 1980; Castellari & Ottani, 1997).

Figure 7

The unit cell of (VII), showing the formation of a three-dimensional framework of hydrogen bonds.

Compound (VI) was a commercial sample and was recrystallized from dry ethyl acetate. Compound (VII) was prepared from (II) (0.045 mol) and diethyl malonate (0.023 mol) in refluxing methanol for 2 h. On cooling, colourless crystals of (VII) slowly formed. The product was recrystallized from aqueous EtOH (yield 90%, m.p. 428 K). ¹H NMR (Me₂SO-*d*₆, p.p.m.): δ 3.15 (*s*, 2H, COCH₂), 3.539 (*d*, 12H, CH₂OH), 4.63 (t, 6H, OH), 7.55 (s, 2H, NH). ¹³C NMR (Me₂SOd₆, p.p.m.): δ 44.4 (COCH₂), 60.6 (CH₂OH), 62.9 (C-quarternary), 168.8 (CO). IR (KBr): v 3361 and 3308 (OH), 3217 (NH), 2970, 2953 and 2883 (CH), 1648 (CO).

Compound (VI)

Crystal data

$C_4H_{10}O_3$	$D_x = 1.320 \text{ Mg m}^{-3}$
$M_r = 106.12$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/m$	Cell parameters from 1123
a = 4.8066 (3) Å	reflections
b = 9.5179 (6) Å	$\theta = 2.9-27.5^{\circ}$
c = 6.1346 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 107.911 \ (4)^{\circ}$	T = 292 (2) K
$V = 267.05 (3) \text{ Å}^3$	Prism, colourless
Z = 2	$0.26 \times 0.12 \times 0.05 \text{ mm}$

Data collection

Enraf–Nonius KappaCCD
diffractometer
φ and ω scans
Absorption correction: empirical
(SORTAV; Blessing, 1995, 1997)
$T_{\min} = 0.949, \ T_{\max} = 0.994$
2166 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.103$ S = 1.04629 reflections 46 parameters H-atom parameters constrained

504 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$ $\theta_{\rm max} = 27.4^{\circ}$ $h = -5 \rightarrow 6$ $k = -12 \rightarrow 11$ $l = -7 \rightarrow 7$

629 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0523P)^2]$ + 0.0278P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.21 (5)

Table 1

Hydrogen-bonding geometry (Å, °) for (VI).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1 \cdots O2^{i} \\ O2 - H2B \cdots O2^{ii} \\ O2 - H2C \cdots O1^{iii} \end{array}$	0.82	1.91	2.7130 (11)	167
	0.82 (4)	1.91 (4)	2.729 (2)	173 (4)
	0.79 (4)	1.93 (4)	2.7130 (11)	175 (4)

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -x, -y, -z; (iii) $1 - x, y - \frac{1}{2}, 1 - z$.

Compound (VII)

Crystal data	
$C_{11}H_{22}N_2O_8$	$D_x = 1.484 \text{ Mg m}^{-3}$
$M_r = 310.31$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 3982
a = 11.6928 (11) Å	reflections
b = 5.6610(5) Å	$\theta = 3.7 - 32.3^{\circ}$
c = 21.0034 (19) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 92.700 \ (2)^{\circ}$	T = 292 (2) K
$V = 1388.7 (2) \text{ Å}^3$	Plate, colourless
Z = 4	$0.50 \times 0.50 \times 0.10 \text{ mm}$

Table 2

TT 1 1	1. 1.		/ Å	\circ	C	$(\mathbf{X} \mathbf{T} \mathbf{T} \mathbf{X})$	
Hydrogen-b	onding	geometry	(A,	Č)	IOT	(VII).	•

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O3^i$	0.86	2.58	3.2445 (16)	135
$O4-H4\cdots O2^{ii}$	0.82	2.03	2.8037 (16)	157
$O2-H2 \cdot \cdot \cdot O4^{iii}$	0.82	1.91	2.7238 (15)	172
$O3-H3\cdots O1^{iv}$	0.82	1.89	2.7069 (16)	175
$C4-H4A\cdots O1$	0.97	2.47	2.9227 (19)	108

Symmetry codes: (i) x, 1 + y, z; (ii) $x - \frac{1}{2}, \frac{1}{2} + y, z$; (iii) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (iv) $\frac{1}{2} + x, y - \frac{1}{2}, z$.

Data collection

Bruker SMART 1000 CCD area- detector diffractometer	2473 independent reflections 2027 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.040$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.5^{\circ}$
(SADABS; Bruker, 2000)	$h = -10 \rightarrow 17$
$T_{\rm min} = 0.869, T_{\rm max} = 0.987$	$k = -8 \rightarrow 8$
6754 measured reflections	$l = -31 \rightarrow 31$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1186P)^2]$

All H atoms were placed in geometrically calculated positions and refined using a riding model. *PLATON* (Spek, 2002) was used for the analysis of the hydrogen bonding.

For compound (VI), data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO* and *COLLECT*. For compound (VII), data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*. For both compounds, program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEX* in *OSCAIL* (McArdle, 1994, 2000) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

CF and JLW thank CNPq, FAPERJ and FUJB. JMSS thanks the University of Aberdeen for supporting the X-ray facilities. The authors thank the EPSRC's X-ray Crystallographic Service, University of Southampton, for collecting the data for (VI), and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher *et al.*, 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1567). Services for accessing these data are described at the back of the journal.

References

- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Bruker (1998). *SMART*. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). *SADABS* (Version 2.03) and *SAINT* (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Castellari, C. & Ottani, S. (1997). Acta Cryst. C53, 482-486.
- Eilerman, D. & Rudman, R. (1979a). Acta Cryst. B35, 2458-2460.
- Eilerman, D. & Rudman, R. (1979b). Acta Cryst. B35, 2768-2771.
- Eilerman, D. & Rudman, R. (1980). J. Chem. Phys. 72, 5656-5666.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Hope, H. & Nichols, B. G. (1981). Acta Cryst. A37, C-136.
- Katrusiak, A. (1995). Acta Cryst. B51, 873-879.
- Ladd, M. F. C. (1979). Acta Cryst. B35, 2375-2377.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438–439.
- McArdle, P. (2000). OSCAIL for Windows. National University of Ireland, Galway, Ireland.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ross, J. N., Low, J. N., Fernandes, C., Wardell, J. L. & Glidewell, C. (2001). Acta Cryst. C57, 949–951.
- Semmingsen, D. (1988). Acta Chem. Scand. Ser. A, 42, 279-283.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2002). *PLATON*. Version of 2002. University of Utrecht, The Netherlands.
- Zakaria, C. M., Low, J. N. & Glidewell, C. (2001). Acta Cryst. E57, o1081– 01083.